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Thermal fluctuations introduced into decaying grid turbulence a t  two different down- 
stream locations are shown to be initially correlated and this correlation decays with 
distance from the grid. The fluctuations are introduced by placing two mandolines 
(Warhaft & Lumley 1978) a t  different distances downstream from the grid. The sum 
of the thermal variances produced by each mandoline operating separately, 7: +E, is 
significantly less than the total variance produced by both mandolines operating 
simultaneously, (0, + O,) ,  = @+ 0!+ 20,8,, i.e. the deficit is due to the covariance 
term 2O,S,. This covariance is responsible for a cross-correlation, p = S,S,/(S~S$):, as 

great as 0.6. The decay of 8,0, and p is studied for various initial input thermal scale 
sizes and for various input locations. It, is shown that the covariance follows a power- 
law decay, the exponent varying from - 5-5  if the thermal fluctuations are introduced 
close to the grid where the turbulence dissipation rate is large and the flow is inhomo- 
geneous to - 4 if they are introduced further downstream ( x / M  10, where x is the 
distance from the grid and ill is the grid mesh length) in the region where the approxi- 

mately isotropic turbulence is beginning to develop. The decay rate of S,S, and p was 
insensitive to the intensity of the thermal fluctuations. I n  all these experiments the 
cross-correlation between velocity and temperature fluctuations was very small 
( - - 0.05) and temperature was a passive additive. The results, which appear to be the 
first quantitative measurements of the rate of destruction of scalar covariance and 
hence of the mixing rate between two scalars, are shown to provide good confirmation 
of recent predictions of the decay ofp by the second-order closure techniques of Lumley 
(1978a, b ) .  

- -  

- - -_ 
- 

- 

1. Introduction 
A principal characteristic of turbulence, and one that has provided impetus for much 

turbulence research, is its ability to  mix and to transport rapidly heat and scalars such 
as moisture, chemical reactants, pollutants and ions, as well as many others. Often, 
both in nature and in the laboratory, two scalars are involved in the mixing and 
transport process. For example, in the atmosphere there are usually both temperature 
and humidity fluctuations and the question arises as to what effect the fluctuations 
and gradients of one scalar may have on the transport of the other (Warhaft 1976). 
Further, the radio refractive index is a function of both temperature and humidity 
fluctuations and thus the temperature-humidity covariance plays a role in determining 
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thc scattering of electromagnetic waves (Wyngaard et ttl. 1978). I n  order to understand 
these processes knowledge is required of the cross-correlation between the temperature 
and humidity fluctuations and how this varies both spatially and temporally. Further 
examples of the mixing of two scalars may be drawn from the oceans where there are 
temperature and salinity fluctuations, the upper atmosphere where various ions are 
mixed as well as plasma mixing in stars and nebulae. But perhaps the most significant 
processes involving the mixing of two scalars are those in which fast chemical reactions 
occur. Here one of the vital parameters determining the reaction rate is the rate a t  
which the two scalars are mixed together and smeared at  the Kolmogorov microscale 
v here the reaction takes place (Corrsin 1961; Hill 1976; Libby (I: Williams 1976). 

In  spite of the importance of two-scalar mixing there appears to be r,o quantitativc 
data on their mixing rate even for passive, non-reactive scalars in simple flows. It is 
the purpose of this study to examine this problem experimentally for grid-generated 
turbulent flow, a flow that is not only of academic importance because of its com- 
parative simplicity, but also of practical significance since i t  is paradigmatic of many 
situations in which two scalars are mixed (Libby & tT7illiarns 1976). 

The rate equation for the covariance of two scalars is 

where u and Pare the fluctuations of the two scalars which have respective means A and 
B,  C., and uI are the mean and fluctuating components of velocity and K, and K ,  are the 
molecular (or thermal, in  the case of temperature) diffusivities of A and B. The overbars 
denote averaging. This equation is derived in a similar manner to that for the scalar 
variance except here the equation for u is multiplied by p and that for is multiplied 
by CI and the two resulting equations are added and averaged; equation t then results 
after making the usual assumptions for high-Reynolds-number turbulence (Tennekes (I: 
Lumley 1972). For decaying grid-generated turbulence in which there are fluctuations 
of Q: and /3 but no mean gradients of these quantities, equation f 1 )  reduces to  

The term on the right-hand side of equation ( 2 )  is the dissipation rate of the scalar 
covariance and is often denoted as cap. Equation ( 2 )  describes the rate a t  which the 
scslar covariance is destroyed and thus the rate a t  which the scalars are smeared and 
niixed at  the microscale, and has obvious significance in determining chemical reaction 
rates and combustion rates. 

In  this  work a simple approach will be taken for the study of equation ( 2 ) .  A single 
scalar (temperature) will be introduced a t  two different locations (and generally a t  
different scales) into decaying grid turbulence. We will show by a method of inference 
that the two sets of temperature fluctuations, O1 and O,, are initially correlated, giving 
rise to a covariance 0, O,, and that as the flow evolves this covariance is dissipated. Thus 
for our study K~ = K~ = K ,  the thermal diffusivity, and the governing equation is 

- 

ao,O, ao, ao, 
at dxj axj 
- = - 2 K - -  

It should be noted that, in most problems involving gaseous mixing, K~ - K ~ .  
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YIGCJRE 1 .  Thr two lower curves are the thermal variance decays for each ma/idoZarie operating 
separately; tho wrairdoZir/e configurations are (10, 2 )  and (15, 1 )  (see t es t  for nomenclature). 
Curve S IS the sum of the two lower curves and curve B is the variance decay for both tna~rdolttws 
opcrating simultaneously. T ,  the rnean temperature, is 300 "K and TIM is the normalized 
downstream tlistance ( M  is the mesh length, 2.5  em). 

2. Apparatus 
The experiments were conducted in the same vertically oriented wind tunnel as 

used by Warhaft (1980) but with a constant-area test section rather than with the 
secondary contraction used in the previous study. Thus the tunnel had a 16 x 16 mesh 
length cross-section and a streamwise extent of 180 mesh lengths, where the mesh 
length ( X )  of the biplanar turbulence-generating grid was 0.025 m and its soliditywas 
0.34. The mean speed was 6.4 m s-1. As in Warhaft & Lumley (1978) and Warhaft 
(1980) temperature fluctuations were generated by means of a mandoline: fine heated 
wires in a parallel planar array placed perpendicular to the flow downstream from the 
grid. The actual mandoline configurations employed will be described in the next 
section. It was experimentally determined that the mandolines had no effect on either 
the velocity spectra or on the velocity variance decay rate even when two mandolines 
were placed in the flow 5s was the case for the experiments to be described here. For 
further discussion of the effect of the mandolines on the velocity field see Fl'arhaft ( 1980). 
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FIGURE 2. (a )  Tho decay of p (crosses) and scalar covariance (dots) for the data of figure 1 plotted 
as a function of z / M .  ( b )  Tho decay of the scalar covariance of (a )  plotted on logarithmic 
co-ordinates. 

Temperature and velocity fluctuations were measured using the same instrumenta- 
tion as in Warhaft (1980). The noise measured by the resistance thermometer when 
placed in the wind tunnel operating without current being fed through mandolines 
was approximately 4 x "C. The data acquisition and analysis system was also the 
same as that used by Warhaft (1980) but here we will present un-smoothed spectra 
computed from 5 x lo5 data points. 

3. Method 
In  Warhaft & Lumley (1978) and Warhaft (1980) it was shown that the decay rate of 

temperature variance in grid-generated turbulence is a function of the initial scale size 
of the scalar relative to the velocity field. By either moving the mandoline away from 
the grid or by decreasing the spacing between the mandoline wires the thermal scale 
was decreased relative to that of the velocity scale and thus the thermal variance decay 
rate was increased. 

I n  this experiment two mandolines were placed at  different locations downstream 
from the grid. The total temperature variance downstream from the mandolines is 

where 8, and 8, are the fluctuations produced by each mandoline. 
We will consider first an experiment in which the mandolines were placed a t  (1 0 , 2 )  

and (15,l)  where, in the notation of Warhaft (1980), the first term in parenthesis 
denotes the distance of the mandoline from the grid and the second term is the distance 
between the mandoline wires. The units are in grid mesh lengths. Figure 1 shows the 
temperature variance decay for each mandoline heated separately, their sum (curv e X) 
and the total variance when both mandolines are heated together (curve B) .  For the 
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FIGURE 3. Power spectra measured at  x / M  = 35 for the data of figure 1 .  The two lower curves 
are the spectra for each mandoline operating separately, curve S is their sum and curve I3 is the 
power spectrum for both mandolines operating simultaneously. 

latter case the variance is greater than the sum of the individual variances (curve S) by 
nearly 60 yo at  x / M  = 27, a value far in excess of that which could be attributed to 
experimental error (5  % a t  most). From equation (4) this extra variance is identified as 
the scalar covariance term, 28,8,. Figure 2 ( a )  shows a plot of this covariance, derived 
from the data of figure 1 by subtracting curve S from curve B and dividing by 2 
(equation (4)), plotted as a function of x / M .  The covariance decays rapidly, following 
a power-law decay (as do the individual variances) but with a much higher exponent 
as can be seen if 8,8, is plotted in logarithmic co-ordinates, figure 2 (b ) .  The slope is - 4. 
Figure 2(a)  also shows a plot of the decay of the cross-correlation coefficient, p, 
between 8, and 0, defined as 

The cross-correlation decreases monotonically from an initially high value of 0-6 a t  
x / M  = 27 to a value of 0.12 at  x / M  = 81. 

The form of these results is in accord with expectation. Thus p should be positive 
since the velocity eddy turn-over time is much longer than the time it takes the 
velocity field to move from the first to the second mandoline and hence 8, and 8, will 
be 'turned over ' in the same way, i.e. they will be positively correlated. Also, we would 

expect Olez to decay more rapidly than the individual variances since both variance 
decay and a decoupling of the two fields are involved in the covariance decay. 

- 

- 

- -- 
p = e,o,/(op;)&. 

__ 
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FIGURE 4. Power spectra for the data of figure 1 multiplied by k .  (a)  s / M  = 35. ( b )  x / m  = 46. 
The notation is the same as that for figure 3. 

We note that extreme care was taken in measuring the variances of figure 1 and the 
experiments to follow: the probe was placed a t  a particular location in the flow, the 
temperature variance was measured with one mandoline operating, then with the other 
and then with both together. The tunnel was kept rimning throughout the measure- 
ments and because of the low power in the mandolines (a few hundred watts; see 
Warhaft 1980) the mean air temperature (approximately 300K) did not change nor 
did the mean wind speed. The noise of the resistance thermometer and wind tunnel was 
measured for each variance decay and was subtracted from the measured variances on 
a mean square basis. The temperature fluctuations were passive for all the measure- 
ments reported here. The temperature-velocity cross-correlation was deliberately kept 
a t  a low value by having low current in the mandolines, it was generally -0.05 and 
never greater than - 0.l . t  Thus, ulB, - u26, - 0. If this were not the case, the simple 

- -  

t The negative correlation is caused by the small velocity deficit behind the heated m a n d o h e  
wires. This velocity deficit is too small, however, to significantly influence the velocity variance. 
The previous explanation for this correlation (Warhaft 1980, p. 558) is incorrect. 
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FIGURE 5 .  Covariance spectra at  x / M  = 35 and r / M  = 46 for the data of figure 1 deduced 
by subtracting curves S from B (figures 4a, b )  and dividing by 2. 

superposition used here may not apply. For reference the velocity variance decay law 
was z , U 2  = 0*08(x/M)-'.35. 

Figure 3 shows the power spectra of the temperature fluctuations, measured at 
x / M  = 35. Shown are the spectra of each mandoline operating separately, their sum (X) 
and the spectrum of both mandolines operating together (B) .  The integral of the 
difference between curves B and S represents the covariance term of equation ( 4 ) .  
Figure 4 ( a )  shows the power spectra of figure 3 multiplied by wavenumber, k. This 
representation indicates the wavenumber at  which the peak energy lies and is com- 
monly used in the meteorological literature (Lumley & Panofsky 1964). Note that the 
spectra for the case when each mandoline is operating separately peak a t  different 
wavenumbers in accordance with their different variance decay rates and these 
measurements are in quantitative agreement with those of Warhaft (1980). The linear 
ordinate of figure 4 also accentuates the difference between curves B and 8. Figure 4 ( b )  
shows the temperature spectra at x / M  = 46. As x / M  increases, not only does the 
magnitude ofthe spectra decrease but so also does the difference between curves B and S 
since the covariance is decreasing. Note also that the magnitude of the spectrum for the 
mandoline at ( 1 5 , l )  is decreasing at  a faster rate than the magnitude of the spectrum 
€or the mandoline at (1  0,Z) and this is in accord with the faster variance decay for the 
mandoline at (15 , l )  (figure 1). Figure 5 shows the spectra of 8,8,, for x / M  = 35 and 
x / A l  = 46, derived by substracting spectrum S from spectrum B in figure 4 (and 

- 
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dividing by 2). It is of course not possible to obtain a phase spectrum since curves B 
and S of figure 4 were not measured simultaneously. Note that the co-spectra (figure 5 )  
become slightly negative a t  high frequencies probably owing to slightly incorrect noise 
compensation a t  these frequencies. 

The above experiment, then, has determined the covariance destruction rate for the 
case of two passive scalars for which the diffusivities are the same. A further question 
to be addressed, however, is, how does the covariance destruction rate and hence the 
rate a t  which the cross-correlation decays depend on the relative thermal scale sizes 
and the initial input locations of the two scalars? 

- 
4. Dependence of 8,0, and p decay on initial conditions 

Figure 6 shows five further temperature covariance decay experiments for various 
mandoline combinations (labelled on the graph) and figures 7 and 8 show the covariance 
and cross-correlation coefficient decays respectively, derived in the same way as those 
of figure 2, which are also re-plotted in figures 7 and 8. Table 1 lists the data of figures 1 
and 6. 

The B I B 2  decay curves of figure 7 and the p decay curves of figure 8 show that as the 
mandolines are progressively moved away from the grid 8,02 and p decay less rapidly: 
for the mandolines a t  (1.5,2) and ( 5 , l )  and for the mandolines at  (1 .5 ,2 )  and (10 , l )  m, 
has a decay law exponent of - 5.5; for the mandoline configuration (5,2)  and ( i 0,1) the 

- 
- 

FIGURE 6. Five separate experiments of temperature variance decay for each mntdoliire heated 
separately, lower two curves, their sum (8)  and the variance decay when both m m d o l i n e s  arc 
heated simultaneously (B). The m n d o l i n e  configurations for the separate experiments (a)-(e) arc, 
shown on the graphs. The data points are listed in table 1. 
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FIGURE 7 .  The decay of covariance, q, for all the experiments of figure 6 and the experiment of 
figure 1 derived in the same way as figure 2 (a ) .  

Mandoline configuration Symbol 

(1.5, 2) and (5, 1) . 
0 
+ 

(1.5, 2) and (10, 1) 
(5, 2) and (10, 1) 

(10, 1) and (15, 2) 
(10, 2) and (15, 1) 
(15, 1) and (21, 2) 

X 

The 0,8, decay curves for mandoline configurations (1-5, 2) and (5, 1) and muiidolirte configura- 
tions (1 ‘5,  2) and (1 0, 1) have been multiplied by 10. 

decay-law exponent is - 4.6; for the three experiments in which the mandolines were 
placed a t  x / M  10 (figure 1 and figure 6d, e )  the decay-law exponent has decreased 
to -4. 

An explanation for this trend probably lies in the way turbulence evolves down- 
stream from a grid. Initially there is a region in which the wakes behind the individual 
bars are coalescing; here the flow is inhomogeneous and the turbulence energy, and 
hence its dissipation rate, is large. It is only at  many mesh lengths downstream from 
the grid that the homogeneous and approximately isotropic region begins to develop; 
this is the region in which the velocity (and thermal) variance obeys the characteristic 
power-law decay. Thus the fast decay of p and 8,8, for the two cases when the mando- 
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notation is t,hc same as for figuie 3.  
!1. l’o\r.c.r sf)wttra. fi)r thcb nrtr/tr/oZi,ae, configuration (10, 1) and (16, 2) at n / M  = 38. Thc 
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27 
33 
3 7 
43 
53 
63 
7 3 
83 

r -  

25.4 
35.4 
41.4 
51.4 
6 I .4 
7 1.4 
81.4 

- - 
O ; / 1 1 2  @IT3 Oi/Tz 

ExpCriinent of figure 1 
L--- 

(LO, 2) (15, 1) 
3 . 1  1 5.27 8.38 
1 .40  1.48 2.88 
0.96 0 81 1.77 
0.5ti 0.38 0.94 
0.38 0.23 0.61 
0.27 0.14 0.42 
0.21 0.10 0.31 

-7 

13.22 
4.11 
2.32 
1.16 
0.72 
0.48 
0.35 

li!ipCriiiic>iit of fignrc 6 ( b )  
7 L --__ 

(1.5,  2) (10, 1)  
2.85 2.83 5.07 7.59 
1.90 1.40 3.30 3.98 
1.59 1.03 2.64 2.97 
1.23 0.65 1.88 2.01 
0.86 0.35 1.20 1.25 
0.63 0.22 0.86 0.80 
0.50 0.16 O.DG 0.65 
0.40 0 . i l  0.50 0.50 

.r/M 

7- 

15.4 
25.4 
35.4 
41.4 
51.4 
G1.4 
81.4 

7 

27 
37 
43 
53 
63 
7 3  
- 

- - 
8;/1l2 @/P 8 i / T z  

Experiment of figure G (u)  

(1.5, 2) (5, 1) 
0.76 2.01 2.77 
0.38 0.51 0.89 
0.24 0.24 0.47 
0.18 0.17 0.35 
0.13 0.11 0.24 
0,092 0.074 0.17 
0,058 0.040 0.098 

Experiment of fipirc 6 (c) 

3.80 
1.03 
0.49 
0.35 
0.24 
0.17 
0.10 

__ L- 

(5 ,2)  (10, 1) 
5.38 5.0G 
2.82 1.75 
2.34 1.12 
1.41 0.59 
1.01 0.38 
0.80 0-25 

10.45 14.21 
4.57 5.36 
3.46 3.87 
2.00 2.19 
1.40 1.47 
1.10 1.14 

(15, 2) 
6.23 
2.07 
1.34 
0.76 
0.48 
0.33 
0.24 

12.52 17.78 
4.24 5.47 
2.74 3.39 
1.53 1.so 
0.95 1.09 
0.66 0.70 
0.48 0.54 

35.4 
41.4 
51.4 
61.4 
81.4 

(15, 1) 
6.15 
3.64 
1.80 
1-04 
0.45 

(21, 2) 
6.50 12.M 
3.69 7.33 
1.88 3.68 
1.11 2.15 
0.51 0.98 

TABLE 1 .  Tabulation of the data of figrires 1 and 6. Rubscripls AS’ arid R haw 
same meaning as in the figures. All va11ics are x 10*. T = 300 I<. 

7 

18.28 
10.18 
4.53 
2.54 
1.16 

lines are placed close to the grid (configurations (1 .5 ,2)  and ( 5 , i )  and configurations 
( 1 * 5 , 2 )  and (10,l))  may be attributable t o  the very rapid mixing of the scalars by the 
intense velocity fluctuations in this region. Further downstream the velocity fluctua- 
tions are less intense and thus less rapid mixing of the scalars would be expected if they 
are injected here. Thus the decay rate of 9,8, and p should decrease, as is observed. 

We note that for all the above experiments the two scalars were injected at  ciif- 
ferent longitudinal positions downstream from the grid. The cases where both the 
scalars are iiijected at the same position from the grid, and particularly very close 
t o  the grid (a  ease pertinent t o  the practical situation of chemical mixing), will be 
discussed in a future publication where the inference method described here will 
also be compared and corroborated with a direct method in which two different 
scalars (temperature and helium) are used. 

Figure 9 shows the spectra measured a t  x / M  = 38 for the mandolines a t  (10, l )  and 
(1 5 , 2 )  and here we see that the two spectra, for the mandolines heated separately, peak 
at the same wavenumber in accord with their similar decay rates (figurc G d ) .  1x1 this 

- 



2. Warhaft 

0.6 

0.5 

0.4 

P 

0.3 

0.2 

0.1 

0 10 20 30 40 50 60 70  80 90 100 

x lM 

FIGURE 10. Equation (10) fitted t o  the p decay curves. 

Symbol 
(experimental 

Mandoliire configuration data) 

(1.5, 2) and (5, 1 )  
(1.5, 2) and (10, 1) 0 
(5, 2) and (10, 1)  i- 
(10, 1) and (15, 2) 0 
(10, 2) and (15, 1 )  
(15, 1 )  and (21,2) 

0 

X 

Coefficient Solution 
G (equation (7) )  of equation ( 7 )  

1.4 -- 
1.4 
1.0 
0.55 -.- 
0.55 ...... 
0.55 _ _ _  

__ 
-. ._ 

experiment we have exactly compensated the decrease in thermal length scale obtained 
as the mandoline is moved further from the grid by increasing the spacing of the wires 
and thus the mandoline at  (15,2)  gives the same variance decay rate and thermal length 
scale as the mandoline at  (10 , l ) .  (The same situation applies also to the experiment of 
figure 6 ( e ) . )  The spectra of  figure 10 should be contrasted with those of figure 4(a) 
where the mandolines were placed at  the same locations but in reverse order, i.e. a t  
(10,2) and (15,l) .  For this situation the spectra peak at  different wavenumbers and 
the thermal variance decays are different. We note however that although both the 
relative and absolute thermal input scales are different for the two cases (figures 4a and 
10) the decay rate of the thermal covariance is the same, with a decay exponent of - 4 
(figure 7 ) .  

5. Modelling the decay rate of p 

Lumley 1972) viz. 
I n  analogy to the way we model the rate equation for a scalar variance (Tennekes & 
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where the dot indicates differentiation with respect to time and A, is the scalar Taylor 
microscale, a reasonable assumption for the scalar co-variance rate equation would be 

Dimensional reasoning alone, however, will not provide a unique combination for 
equation (6), for example @/A;, and %/A$, could appear multiplicatively or additively 
(with suitable exponents); alternative simple combinations do not exist for equation 
(5). Furthermore the two thermal Taylor microscales may have a variable cross- 
correlation, adding another term to equation (6). Clearly more subtle considerations 
are necessary. 

Lumley (1 978a) has examined such problems using second-order closure techniques 
(sometimes called one-point closure). The reader is referred to his paper for a detailed 
survey of the technique. Here i t  will suffice to  state that second-order modelling, which 
aims to predict integrated quantities such as variances and correlation coefficients, is a 
scheme for closing the second-order equations (such as equation ( I ) )  by modelling 
third-order quantities in terms of second-order quantities. Two vital aspects of the 
modelling procedure are that the model equations must have the correct invariance 
characteristics and that a set of realizability conditions must be fulfilled; an example 
of this latter aspect is that if a non-negative quantity approaches zero then so must its 
derivative. The realizability condition has often been neglected by previous workers. 

Using the above technique, Lumley (1978b) shows that for two scalars in de- 
caying turbulence 

P / P  = - C(€s , /E  + €O,/E, (1 - P 2 ) ,  ( 7 )  

where eel, and eoz are the dissipation rates of the thermal variances of and @ 
respectively. The constant C must be determined from experiment. Note that the 
terms c o / p ,  which are inverse time scales, appear in additive rather than multi- 
plicative form; the later combination does not fulfil realizability conditions (Lumley, 
personal communication). Note also that the 1 -p2  term in equation ( 7 )  shows that if 
the initial scalar cross-correlation is unity then it will always remain unity, i.e. the 
scalars will not decouple. This, of course, is physically correct since if two perfectly 
correlated scalars of the same diffusivity are added to a flow there is no mechanism by 
which they will be decoupled. If, however, the scalars had significantly different dif- 
fusivities, then, even if their cross-correlation were initially unity, they would decouple 
and equation ( 7 )  would not hold. 

For the individual @ decay of figure G which can be described well in terms of a 
power-law decay 

iT2 = A(x/_W)-m, (8) 

where A and m are constants for each experiment, 

6" = -&(d@/dt), 

thus equation ( 7 )  reduces to 
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FIGURE 11. Two different realizations of temperature variance and covariance decay for the 
mandolines at ( 5 ,  2) and (10, 1). The notation is the same as figure 1. Curves (a)  aro the same as 
figure S ( c ) .  

Here m, and m2 are the decay exponents for the individual thermal variance decays 
of each two mandoline experiments. 

For all the experiments of figure 6, as well as for the experiment of figure 1, equation 
(10) has been solved using the values of m, and m2 taken from these figures. The initial 
condition has been the initial value of p taken from figure 8 for each trial. The results 
are plotted in figure 10. A good fit to the data points is achieved if C (equation (10)) is 
taken as 1.4 for the two cases where the mandolines are close to  the grid (experiments 
( a )  and ( b )  of figure 6) and if C = 0.55 for the cases where the mandolines are placed a t  
x / M  > 10 (experiments ( d )  and (e) of figure 6 and the experiment of figure 1). For the 
intermediate case (mandolines at  (5,2) and (10, I) ) ,  C has been taken as 1. Thus, 
although equation (7)  fits the form of the p decay data well, the (relatively small) 
variation of the constant C suggests that the equation requires some modification in 
order to eliminate this variation. 

Finally, it should be noted that a decay law p / p  K ( x /M) - l  immediately follows if 
i t  is assumed that 8,B2 has a power-law decay; the model outlined here, however, only 
makes assumptions concerning the decay of the scalar variances. Furthermore, the 
above model predicts the I -p2  term, which has important physical significance as 
mentioned above. 

__ 
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FIGURE 12. The decay of p for the two realizations of figure 11: f ,  ( a ) ;  0 ,  ( b ) .  

6. Discussion of method 
The method of inferring the cross-correlation between 8, and 8, relies on the assump- 

tion that the thermal fluctuations from the first mandoline do not interfere with the 
production of thermal fluctuations from the second mandoline, i.e. is the same 
whether the first mandoline is operating or not. While we cannot formally prove that 
there is no interference, we will present a number of points that suggest there is none. 
First, the form of the cova,riance and cross-correlation decays of figures 7 and 8 were 
independent of both the relative values and the absolute values of the current fed 
through the mandoline wires. Figure 11 shows two trials done for the mandoline con- 
figuration ( 5 , 2 )  and (10,l) .  For figure 11 (a )  (the same as figure 6 c )  the current in the two 
mandolines was adjusted so that the thermalvariance fromeachmandolinewas the same 
a t  z l M  = 27 while for figure 11 ( b )  the current was adjusted so that a t  x / M  = 27 @was 
3.5 times greater for the mandoline at  (10, 1) than for the mandoline a t  ( 5 ,  2 )  and their 
variances became equal only at  about x l M  = 80. Furthermore, the absolute variances 
were different by a factor of approximately 10 for the two cases. However, p inferred 
from these two trials (figure 12) was essentially the same. It would be expected that if 

8; was dependent on then if 3; were changed relative to some effect would be 
seen on the p decay. Secondly, consider the two experiments in which the mandoline 
configurations were (10,2) and (15, l )  (figure 1) and then (10,1) and (15,2)  (figure 6 d ) .  
I n  the first experiment the mandoline with one mesh spacing was placed after the 
mandoline with two mesh spacings and then the mandolines were reversed, the mando- 
line with two mesh spacings was placed after the mandoline with one mesh spacing. 
If there was an interference effect from the upstream mandoline it would be reasonable 
to expect that it be a function of the wire spacings (and hence of the thermal scale of 0,) 
yet for both these experiments the same covariance and p decay forms were observed. 
Thirdly, the temperature of the mandoline wires is approximately 230 "C (Warhaft 
1980) while the r.m.s. temperature of the fluctuations from the first mandoline when 
they reach the second mandoline is typicically 0.1 "C and their mean temperature is 

- 
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approximately 27" C (ambient temperature). It is doubtful that these small fluctuations 
would influence the heat released from the second mandoline wires which are over 
200 "C above ambient temperature. These three reasons suggest, then, that it is highly 
unlikely that the O1 fluctuations affect the production of the O2 fluctuations. 

7. Concluding remarks 
A simple method by which scalar covariance decay is inferred by the injection of a 

single scalar a t  two separate locations into decaying grid turbulence has been described. 
The results show that the scalar covariance follows a power-law decay, the exponent 
varying from - 5.5 if both mandolines are placed close to the grid to - 4 if the two 
scalars are introduced further downstream (x/N 2 10). While the decay rate of O,O, 
decreases as the mandolines are placed further downstream (in contrast, i t  should be 
noted, to the variance decay rate which increases as the mandolines are placed further 
downstream) its decay seems to  be less sensitive to  initial conditions than that of the 
variance decay. Thus in the region x / M  > 10, three experiments in which the mando- 
line configurations were different gave the same covariance decay rate, with a power- 
law exponent of - 4. 

Finally, it should be pointed out that since the destruction rate of the scalar covari- 
ance indicates the rate a t  which the turbulent fluctuations mix the scalars the method 
employed here could be used for the investigation of other, more complex flows, such 
as jets and wakes, so long as they are statistically stationary. 

- 
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