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Thermal fluctuations introduced into decaying grid turbulence at two different down-
stream locations are shown to be initially correlated and this correlation decays with
distance from the grid. The fluctuations are introduced by placing two mandolines
(Warhaft & Lumley 1978) at different distances downstream from the grid. The sum
of the thermal variances produced by each mandoline operating separately, 62 + 02, is
significantly less than the total variance produced by both mandolines operating
simultaneously, (0, +0,)2 = 02+ 602+ 20,0,,i.e. the deficit is due to the covariance
term 20, 0,. This covariance is responsible for a cross-correlation, p = 6,6,/(036%)%, as
great as 0-6. The decay of 6,0, and p is studied for various initial input thermal scale
sizes and for various input locations. It is shown that the covariance follows a power-
law decay, the exponent varying from — 5-5 if the thermal fluctuations are introduced
close to the grid where the turbulence dissipation rate is large and the flow is inhomo-
geneous to — 4 if they are introduced further downstream (xz/M > 10, where z is the
distance from the grid and M is the grid mesh length) in the region where the approxi-
mately isotropic turbulence is beginning to develop. The decay rate of 6,6, and p was
insensitive to the intensity of the thermal fluctuations. In all these experiments the
cross-correlation between velocity and temperature fluctuations was very small
(~ —0-05) and temperature was a passive additive. The results, which appear to be the
first quantitative measurements of the rate of destruction of scalar covariance and
hence of the mixing rate between two scalars, are shown to provide good confirmation
of recent predictions of the decay of p by the second-order closure techniques of Lumley
(1978a,b).

1. Introduction

A principal characteristic of turbulence, and one that has provided impetus for much
turbulence research, is its ability to mix and to transport rapidly heat and scalars such
as moisture, chemical reactants, pollutants and ions, as well as many others. Often,
both in nature and in the laboratory, two scalars are involved in the mixing and
transport process. For example, in the atmosphere there are usually both temperature
and humidity fluctuations and the question arises as to what effect the fluctuations
and gradients of one scalar may have on the transport of the other (Warhaft 1976).
Further, the radio refractive index is a function of both temperature and humidity
fluctuations and thus the temperature-humidity covariance playsaroleindetermining
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the scattering of electromagnetic waves (Wyngaaid ef al. 1978). In order to understand
these processes knowledge is required of the cross-correlation between the temperature
and humidity fluctuations and how this varies both spatially and temporally. Further
examples of the mixing of two scalars may be drawn from the oceans where there are
temperature and salinity fluctuations, the upper atmosphere where various ions are
mixed as well as plasma mixing in stars and nebulae. But perhaps the most significant
processes involving the mixing of two scalars are those in which fast chemical reactions
occur. Here one of the vital parameters determining the reaction rate is the rate at
which the two scalars are mixed together and smeared at the Kolmogorov microscale
where the reaction takes place (Corrsin 1961; Hill 1976; Libby & Williams 1976).

In spite of the importance of two-scalar mixing there appears to be 1.0 quantitative
data on their mixing rate even for passive, non-reactive scalars in simple flows. It is
the purpose of this study to examine this problem experimentally for grid-generated
turbulent flow, a flow that is not only of academic importance because of its com-
parative simplicity, but also of practical significance since it is paradigmatic of many
situations in which two scalars are mixed (Libby & Williams 1976).

The rate equation for the covariance of two scalars is

oap 80(/)’ 3A E)B —  Oofu;
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where « and f are the ﬂuctuatlons of the two scalars which have respective means 4 and
B, U; and u, are the mean and fluctuating components of velocity and «, and k, are the
molecular (or thermal, in the case of temperature) diffusivities of 4 and B. The overbars
denote averaging. This equation is derived in a similar manner to that for the scalar
variance except here the equation for a is multiplied by £ and that for f is multiplied
by « and the two resulting equations are added and averaged; equation 1 then results
after making the usual assumptions for high-Reynolds-number turbulence (Tennekes &
Lumley 1972). For decaying grid-generated turbulence in which there are fluctuations
of @ and # but no mean gradients of these quantities, equation (1) reduces to
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The term on the right-hand side of equation (2) is the dissipation rate of the scalar
covariance and is often denoted as e,5. Equation (2) describes the rate at which the
scalar covariance is destroyed and thus the rate at which the scalars are smeared and
mixed at the microscale, and has obvious significance in determining chemical reaction
rates and combustion rates.

In this work a simple approach will be taken for the study of equation (2). A single
scalar (temperature) will be introduced at two different locations (and generally at
different scales) into decaying grid turbulence. We will show by a method of inference
that the two sets of temperature fluctuations, 0, and 0,, are initially correlated, giving
rise toa covariance 0, 0,, and that as the flow evolves this covariance is dissipated. Thus
for our study k; = «, = «, the thermal diffusivity, and the governing equation is

00,0, 80, 80,

al =_%max‘ (3)

[t should be noted that, in most problems involving gaseous mixing, k, ~ k..
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¥icure 1. The two lower curves are the thermal variance decays for cach mandoline operating
separately; tho mandoline configurations are (10, 2) and (15, 1) (see text for nomenclature).
Curve § is the sum of the two lower curves and curve B is the variance decay for both mandolines
operating simultancously. 7, the mean temperature, is 300 °K and »/M is the normalized
downstream distance (M is the mesh length, 2-5 e¢m).

2. Apparatus

The experiments were conducted in the same vertically oriented wind tunnel as
used by Warhaft (1980) but with a constant-area test section rather than with the
secondary contraction used in the previous study. Thus the tunnel had a 16 x 16 mesh
length cross-section and a streamwise extent of 180 mesh lengths, where the mesh
length (M) of the biplanar turbulence-generating grid was 0-025m and its solidity was
0-34. The mean speed was 6:4ms~1. As in Warhaft & Lumley (1978) and Warhaft
(1980) temperature fluctuations were generated by means of a mandoline: fine heated
wires in a parallel planar array placed perpendicular to the flow downstream from the
grid. The actual mandoline configurations employed will be described in the next
section. It was experimentally determined that the mandolines had no effect on either
the velocity spectra or on the velocity variance decay rate even when two mandolines
were placed in the flow as was the case for the experiments to be described here. For
further discussion of the effect of the mandolines on the velocity field see Warhaft (1980).



96 Z. Warhaft

L: h)
07
B @ Jas 102 b
06 . =
05 = -2 —
— _1 — {‘\ —
S
04 - - °_ ‘ -
el S
B 1 20 .
03 . %, 07 E
S
- 1 & -
02 b — —
p— — —
01 1 -
0 10 20 30 40 S0 60 70 80 90 10 2030 50 100
x/M x/M

FicUuRE 2. (a) The decay of p (crosses) and scalar covariance (dots) for the data of figure 1 plotted
as a function of x/M. (b) The decay of the scalar covariance of (a) plotted on logarithmic
co-ordinates.

Temperature and velocity fluctuations were measured using the same instrumenta-
tion as in Warhaft (1980). The noise measured by the resistance thermometer when
placed in the wind tunnel operating without current being fed through mandolines
was approximately 4 x 102 °C. The data acquisition and analysis system was also the
same as that used by Warhaft (1980) but here we will present un-smoothed spectra
computed from 5 x 10> data points.

3. Method

In Warhaft & Lumley (1978) and Warhaft (1980) it was shown that the decay rate of
temperature variance in grid-generated turbulence is a function of the initial scale size
of the scalar relative to the velocity field. By either moving the mandoline away from
the grid or by decreasing the spacing between the mandoline wires the thermal scale
was decreased relative to that of the velocity scale and thus the thermal variance decay
rate was increased.

In this experiment two mandolines were placed at different locations downstream
from the grid. The total temperature variance downstream from the mandolines is

(0,+0,) = 63+ 03+ 20,0,, (4)

where 0, and 8, are the fluctuations produced by each mandoline.

We will consider first an experiment in which the mandolines were placed at (10, 2)
and (15, 1) where, in the notation of Warhaft (1980), the first term in parenthesis
denotes the distance of the mandoline from the grid and the second term is the distance
between the mandoline wires. The units are in grid mesh lengths. Figure 1 shows the
temperature variance decay for each mandoline heated separately, theirsum (curv e S)
and the total variance when both mandolines are heated together (curve B). For the
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FicUurE 3. Power spectra measured at /M = 35 for the data of figure 1. The two lower curves
are the spectra for each mandoline operating separately, curve § is their sum and curve B is the
power spectrum for both mandolines operating simultaneously.

latter case the variance is greater than the sum of the individual variances (curve S) by
nearly 609, at /M = 27, a value far in excess of that which could be attributed to
experimental error (5 %, at most). From equation (4) this extra variance is identified as
the scalar covariance term, 20, 0,. Figure 2(a) shows a plot of this covariance, derived
from the data of figure 1 by subtracting curve S from curve B and dividing by 2
(equation (4)), plotted as a function of /M. The covariance decays rapidly, following
a power-law decay (as do the individual variances) but with a much higher exponent
as can be seen if 0, 0, is plotted in logarithmic co-ordinates, figure 2(b). The slope is — 4.
Figure 2(a) also shows a plot of the decay of the cross-correlation coefficient, p,
between 0, and ¢, defined as
p=0,0,/(6303)%.

The cross-correlation decreases monotonically from an initially high value of 0-6 at
/M = 27 to a value of 0-12 at x/M = 81.

The form of these results is in accord with expectation. Thus p should be positive
since the velocity eddy turn-over time is much longer than the time it takes the
velocity field to move from the first to the second mandoline and hence ¢, and 6, will
be ‘turned over’ in the same way, i.e. they will be positively correlated. Also, we would
expect 0,0, to decay more rapidly than the individual variances since both variance
decay and a decoupling of the two fields are involved in the covariance decay.
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FicUure 4. Power spectra for the data of figure 1 multiplied by k. (a) x/M = 35. (b) x/m = 46.
The notation is the same as that for figure 3.

We note that extreme care was taken in measuring the variances of figure 1 and the
experiments to follow: the probe was placed at a particular location in the flow, the
temperature variance was measured with one mandoline operating, then with the other
and then with both together. The tunnel was kept running throughout the measure-
ments and because of the low power in the mandolines (a few hundred watts; see
Warhaft 1980) the mean air temperature (approximately 300K) did not change nor
did the mean wind speed. The noise of the resistance thermometer and wind tunnel was
measured for each variance decay and was subtracted from the measured variances on
a mean square basis. The temperature fluctuations were passive for all the measure-
mentsreported here. The temperature-velocity cross-correlation was deliberately kept
at a low value by having low current in the mandolines, it was generally —0-05 and

never greater than — 0-1.1 Thus, u, 6, ~ u,0, ~ 0. If this were not the case, the simple
1 The negative correlation is caused by the small velocity deficit behind the heated mandoline

wires. This velocity deficit is too small, however, to significantly influence the velocity variance.
The previous explanation for this correlation (Warhaft 1980, p. 558) is incorrect.
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Ficure 5. Covariance spectra at *x/M = 35 and /M = 46 for the data of figure 1 deduced
by subtracting curves S from B (figures 4a, b) and dividing by 2.

superposition used here may not apply. For reference the velocity variance decay law
was u2/ U2 = 0-08(a/M)~1%,

Figure 3 shows the power spectra of the temperature fluctuations, measured at
x/M = 35.Shown are the spectra of each mandoline operating separately, their sum (:S)
and the spectrum of both mandolines operating together (B). The integral of the
difference between curves B and S represents the covariance term of equation (4).
Figure 4(a) shows the power spectra of figure 3 multiplied by wavenumber, k. This
representation indicates the wavenumber at which the peak energy lies and is com-
monly used in the meteorological literature (Lumley & Panofsky 1964). Note that the
spectra for the case when each mandoline is operating separately peak at different
wavenumbers in accordance with their different variance decay rates and these
measurements are in quantitative agreement with those of Warhaft (1980). The linear
ordinate of figure 4 also accentuates the difference between curves B and S. Figure 4 (b)
shows the temperature spectra at x/M = 46. As x/M increases, not only does the
magnitude of the spectra decrease but so also doesthe difference between curves B and §
since the covariance is decreasing. Note also that the magnitude of the spectrum for the
mandoline at (15, 1) is decreasing at a faster rate than the magnitude of the spectrum
for the mandoline at (10, 2) and this is in accord with the faster variance decay for the
mandoline at (15, 1) (figure 1). Figure 5 shows the spectra of 0,0,, for /M = 35 and
x/M = 46, derived by substracting spectrum § from spectrum B in figure 4 (and
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Ficure 6. Five separate experiments of temperature variance decay for each mandoline heated
separately, lower two curves, their sum (S) and the variance decay when both mandolines arc
heated simultaneously (B). The mandoline configurations for the separate experiments (@)—(e) are
shown on the graphs. The data points are listed in table 1.

dividing by 2). Tt is of course not possible to obtain a phase spectrum since curves B
and S of figure 4 were not measured simultaneously. Note that the co-spectra (figure 5)
become slightly negative at high frequencies probably owing to slightly incorrect noise
compensation at these frequencies.

The above experiment, then, has determined the covariance destruction rate for the
case of two passive scalars for which the diffusivities are the same. A further question
to be addressed, however, is, how does the covariance destruction rate and hence the
rate at which the cross-correlation decays depend on the relative thermal scale sizes
and the initial input locations of the two scalars?

4. Dependence of 0,0, and p decay on initial conditions

Figure 6 shows five further temperature covariance decay experiments for various
mandoline combinations (labelled on the graph) and figures 7 and 8 show the covariance
and cross-correlation coefficient decays respectively, derived in the same way as those
of figure 2, which are also re-plotted in figures 7 and 8. Table 1 lists the data of figures 1
and 6.

The 6,0, decay curves of figure 7 and the p decay curves of figure 8 show that as the
mandolines are progressively moved away from the grid 4,0, and p decay less rapidly:
for the mandolines at (1-5, 2) and (5, 1) and for the mandolines at (1-5, 2) and (10, 1) 6,0,
has a decay law exponent of — 5-5; for the mandoline configuration (5, 2) and (10, 1) the
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Ficure 7. The decay of covariance, §, 6, for all the experiments of figure 6 and the experiment of
figure 1 derived in the same way as figure 2(a).

Mandoline configuration Symbol
(1-5, 2) and (5, 1)
(1-5, 2) and (10, 1)

(5, 2) and (10, 1)
(10, 1) and (15, 2)
(10, 2) and (15, 1)
(15, 1) and (21, 2)

BxX@®+0O-

The 6,6, decay curves for mandoline configurations (1-5, 2) and (5, 1) and mandoline configura-
tions {1-5, 2) and (10, 1) have been multiplied by 10.

decay-law exponent is — 4-6; for the three experiments in which the mandolines were
placed at /M > 10 (figure 1 and figure 6d, ¢) the decay-law exponent has decreased
to —4.

An explanation for this trend probably lies in the way turbulence evolves down-
stream from a grid. Initially there is a region in which the wakes behind the individual
bars are coalescing; here the flow is inhomogeneous and the turbulence energy, and
hence its dissipation rate, is large. It is only at many mesh lengths downstream from
the grid that the homogeneous and approximately isotropic region begins to develop;
this is the region in which the velocity (and thermal) variance obeys the characteristic
power-law decay. Thus the fast decay of p and 6,6, for the two cases when the mando-
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Ficure 8. The cross-correlation coefficient, p, for all the experiments of figure 6 and the cxperi-
ment of figure 1. The symbols represent the same mandoline configurations as in figure 7.
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Iieuni 9. Power spectra for the mandoline configuration (10, 1) and (15, 2) at »/AM = 38. The

notation is the same as for figure 3.
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/M 03/17 0y/Tr 6%/TE 63/1* /M 03/T 03T 0%/Tr U/T
Experiment of figure 1 Experiment of figure 6 (a)
T A A ~ N
(10, 2) (15,1) (1-5,2) (5, 1)
254 311 527 838 13-22 15-4 0-76 2-01 277 3-80
35-4 1-40 1-48 2-88 411 25-4 0-38 0-51 0-89 1-03
414 0-96 0-81 1-77 2:32 35-4 0-24 0-24 0-47 0-49
51-4 0-56 0-38 0-94 1-16 41-4 0-18 017 0-35 0-35
61-4 0-38 0-23 0-61 0-72 51-4 013 0-11 0-24 0-24
714 0-27 0-14 0-42 0-48 61-4 0-092 0074  0-17 0-17
81-4 0-21 0-10 0-31 0-35 81-4 0-058 0-040 0-098 0-10
Experiment of figure 6(b) Experiment of figure 6 (¢)
— - — — A
(1-5,2) (10, 1) (5,2) (10, 1)
27 2-85 2-83 5-67 7-59 27 5-38 506 1045 14-21
33 1-90 1-40 3-30 3-98 37 2-82 1-75 4-57 5-36
37 1-59 1-05 2-64 2-97 43 2-34 1-12 3-46 3-87
43 1-23 0-65 1-88 2-01 53 1-41 0-59 2-00 2-19
53 0-85 0-35 1-20 1-25 63 1-01 0-38 1-40 1-47
63 0-63 0-22 0-86 0-86 73 0-80 0-25 1-10 1-14
73 0-50 0-16 0-66 0-65 — — — — o
83 0-40 0-11 0-50 0-50 — — — — —
Experiment of figure 6(d) Experiment of figurc 6 (e)
o A N I A N
(10, 1) (15,2) (15,1) (21, 2)
25-4 6-38 6-23 1252 17-78 35-4 6-15 6-50  12-66  18-28
354 218 2-07 4-24 547 41-4 3-64 3-69 7-33 10-18
41-4 1-40 1-34 274 3-39 51-4 1-80 1-88 308 4-55
51-4 077 0-76 1-53 1-80 61-4 1-04 1-11 215 2-54
61-4 0-47 0-48 0-95 1-09 81-4 0-48 0-51 0-98 1-16
714 0-33 0-33 0-66 076 — — — — —
81-4 0-24 0-24 0-48 0-54 — — — — —

TasrLE 1. Tabulation of the data of figures 1 and 6. Subscripts S and B have
same meaning as in the figures. All values are x 108, 7' = 300 K.

lines are placed close to the grid (configurations (1-5,2) and (5, 1) and configurations
(1-5,2) and (10, 1)) may be attributable to the very rapid mixing of the scalars by the
intense velocity fluctuations in this region. Further downstream the velocity fluctua-
tions are less intense and thus less rapid mixing of the scalars would be expected if they

are injected here. Thus the decay rate of 0,0, and p should decrease, as is observed.

We note that for all the above experiments the two scalars were injected at dif-
ferent longitudinal positions downstream from the grid. The cases where both the
scalars are injected at the same position from the grid, and particularly very close
to the grid (a case pertinent to the practical situation of chemical mixing), will be
discussed in a future publication where the inference method described here will
also be compared and corroborated with a direct method in which two different
scalars (temperature and helium) are used.

Figure 9 shows the spectra measured at /M = 38 for the mandolines at (10, 1) and
(15, 2) and here we see that the two spectra, for the mandolines heated separately, peak
at the same wavenumber in accord with their similar decay rates (figure 6d). In this
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Ficure 10. Equation (10) fitted to the p decay curves.
Symbol
(experimental Coefficient Solution
Mandoline configuration data) C (equation (7)) of equation (7)
(1-5,2) and (5, 1) . 14 —
(1-5, 2) and (10, 1) 0O 14 —
(5, 2) and (10, 1) + 1-0 ————
(10, 1) and (15, 2) ® 0-55 —_——
(10, 2) and (15, 1) x 055 ...
(15, 1) and (21,2) [ | 0-55 -

experiment we have exactly compensated the decrease in thermal length scale obtained
as the mandoline is moved further from the grid by increasing the spacing of the wires
and thus the mandoline at (15, 2) gives the same variance decay rate and thermal length
scale as the mandoline at (10, 1). (The same situation applies also to the experiment of
figure 6(e).) The spectra of figure 10 should be contrasted with those of figure 4 (a)
where the mandolines were placed at the same locations but in reverse order, i.e. at
(10,2} and (15, 1). For this situation the spectra peak at different wavenumbers and
the thermal variance decays are different. We note however that although both the
relative and absolute thermal input scales are different for the two cases (figures 4a and
10) the decay rate of the thermal covariance is the same, with a decay exponent of — 4
(figure 7). :

5. Modelling the decay rate of p

In analogy to the way we model the rate equation for a scalar variance (Tennekes &
Lumley 1972) viz.

= 6KkG2/A3, (5)
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where the dot indicates differentiation with respect to time and A, is the scalar Taylor
microscale, a reasonable assumption for the scalar co-variance rate equation would be

01.02 = fn (K»y%’-o_%’ /\01,/\02’/))- (6)

Dimensional reasoning alone, however, will not provide a unique combination for
equation (6), for example 6%/ A3, and 02/ A, could appear multiplicatively or additively
(with suitable exponents); alternative simple combinations do not exist for equation
(5). Furthermore the two thermal Taylor microscales may have a variable cross-
correlation, adding another term to equation (6). Clearly more subtle considerations
are necessary.

Lumley (1978a) has examined such problems using second-order closure techniques
(sometimes called one-point closure). The reader is referred to his paper for a detailed
survey of the technique. Here it will suffice to state that second-order modelling, which
aims to predict integrated quantities such as variances and correlation coefficients, is a
scheme for closing the second-order equations (such as equation (1)) by modelling
third-order quantities in terms of second-order quantities. Two vital aspects of the
modelling procedure are that the model equations must have the correct invariance
characteristics and that a set of realizability conditions must be fulfilled; an example
of this latter aspect is that if a non-negative quantity approaches zero then so must its
derivative. The realizability condition has often been neglected by previous workers.

Using the above technique, Lumley (1978b) shows that for two scalars in de-
caying turbulence

6/p = —Cley, /0 +ey,/03) (1—p?), (7)

where ¢, , and ¢,, are the dissipation rates of the thermal variances of 62 and 02
respectively. The constant ¢ must be determined from experiment. Note that the
terms e,/6%, which are inverse time scales, appear in additive rather than multi-
plicative form; the later combination does not fulfil realizability conditions (Lumley,
personal communication). Note also that the 1 —p? term in equation (7) shows that if
the initial scalar cross-correlation is unity then it will always remain unity, i.e. the
scalars will not decouple. This, of course, is physically correct since if two perfectly
correlated scalars of the same diffusivity are added to a flow there is no mechanism by
which they will be decoupled. If, however, the scalars had significantly different dif-
fusivities, then, even if their cross-correlation were initially unity, they would decouple
and equation (7) would not hold.

For the individual 82 decay of figure 6 which can be described well in terms of a

power-law decay .
6% = A(x/M)™, (8)

where 4 and m are constants for each experiment,
€9 = — §(dO2/dt),

- _UQ_"P]; (1%)""“‘, (9)

thus equation (7) reduces to

U -1
plo =053z (37) tmema) (1= (10)
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Fieure 11, Two different realizetions of temperature variance and covariance decay for the
mandolines at (5, 2) and (10, 1). The notation is the same as figure 1. Curves (a) arc the same as
figure 6(c).

Here m, and m, are the decay exponents for the individual thermal variance decays
of each two mandoline experiments.

For all the experiments of figure 6, as well as for the experiment of figure 1, equation
(10) has been solved using the values of m, and m, taken from these figures. The initial
condition has been the initial value of p taken from figure 8 for each trial. The results
are plotted in figure 10. A good fit to the data points is achieved if C (equation (10)) is
taken as 1-4 for the two cases where the mandolines are close to the grid (experiments
(a) and (b) of figure 6) and if C' = 0-55 for the cases where the mandolines are placed at
/M > 10 (experiments (d) and (e) of figure 6 and the experiment of figure 1). For the
intermediate case (mandolines at (5,2) and (10, 1)), C has been taken as 1. Thus,
although equation (7) fits the form of the p decay data well, the (relatively small)
variation of the constant C suggests that the equation requires some modification in
order to eliminate this variation.

Finally, it should be noted that a decay law p/poc (x/M)~! immediately follows if
it is assumed that 6, 6, has a power-law decay; the model outlined here, however, only
makes assumptions concerning the decay of the scalar variances. Furthermore, the
above model predicts the 1 —p? term, which has important physical significance as
mentioned above.
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Ficure 12. The decay of p for the two realizations of figure 11: +, (a); @. (b).

6. Discussion of method

The method of inferring the cross-correlation between ¢, and 0, relies on the assump-
tion that the thermal fluctuations from the first mandoline do not interfere with the

production of thermal fluctuations from the second mandoline, i.e. 62 is the same
whether the first mandoline is operating or not. While we cannot formally prove that
there is no interference, we will present a number of points that suggest there is none.
First, the form of the covariance and cross-correlation decays of figures 7 and 8 were
independent of both the relative values and the absolute values of the current fed
through the mandoline wires. Figure 11 shows two trials done for the mandoline con-
figuration (5, 2) and (10, 1). For figure 11 (a) (the same as figure 6¢) the currentin the two
mandolines was adjusted so that the thermal variance from each mandoline was the same

at /M = 27 while for figure 11 (b) the current was adjusted so that at /M = 27 6% was
3-5 times greater for the mandoline at (10, 1) than for the mandoline at (5, 2) and their
variances became equal only at about /M = 80. Furthermore, the absolute variances
were different by a factor of approximately 10 for the two cases. However, p inferred
from these two trials (figure 12) was essentially the same. It would be expected that if

0% was dependent on 62 then if 2 were changed relative to 62 some effect would be
seen on the p decay. Secondly, consider the two experiments in which the mandoline
configurations were (10, 2) and (15, 1) (figure 1) and then (10, 1) and (15, 2) (figure 64d).
In the first experiment the mandoline with one mesh spacing was placed after the
mandoline with two mesh spacings and then the mandolines were reversed, the mando-
line with two mesh spacings was placed after the mandoline with one mesh spacing.
If there was an interference effect from the upstream mandoline it would be reasonable
to expect that it be a function of the wire spacings (and hence of the thermal scale of 6,)
yet for both these experiments the same covariance and p decay forms were observed.
Thirdly, the temperature of the mandoline wires is approximately 230 °C (Warhaft
1980) while the r.m.s. temperature of the fluctuations from the first mandoline when
they reach the second mandoline is typicically 0-1°C and their mean temperature is
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approximately 27° C (ambient temperature). It is doubtful that these small fluctuations
would influence the heat released from the second mandoline wires which are over
200 °C above ambient temperature. These three reasons suggest, then, that it is highly
unlikely that the 8, fluctuations affect the production of the ¢, fluctuations.

7. Concluding remarks

A simple method by which scalar covariance decay is inferred by the injection of a
single scalar at two separate locations into decaying grid turbulence has been described.
The results show that the scalar covariance follows a power-law decay, the exponent
varying from —5-5 if both mandolines are placed close to the grid to —4 if the two
scalars are introduced further downstream (xz/M > 10). While the decay rate of 0,0,
decreases as the mandolines are placed further downstream (in contrast, it should be
noted, to the variance decay rate which increases as the mandolines are placed further
downstream) its decay seems to be less sensitive to initial conditions than that of the
variance decay. Thus in the region /M > 10, three experiments in which the mando-
line configurations were different gave the same covariance decay rate, with a power-
law exponent of —4.

Finally, it should be pointed out that since the destruction rate of the scalar covari-
ance indicates the rate at which the turbulent fluctuations mix the scalars the method
employed here could be used for the investigation of other, more complex flows, such
as jets and wakes, so long as they are statistically stationary.
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